Answer the following:

1. The volume of a right circular cylinder is $896 \pi \mathrm{~cm}^{3}$ and its height is 14 cm . Find the radius of its base?

Solution:

Height $=14 \mathrm{~cm}$
Volume $=896 \pi \mathrm{~cm}^{3}$

We know that Volume of a right circular cylinder $=\pi r^{2} \mathrm{~h}=896 \pi$ (given)
$r^{2} \times 14=896$
$r^{2}=\frac{896}{14}=64$
$r=8 \mathrm{~cm}$
2. Two cubes each of volume $216 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid?

Solution:
Given Volume $=216 \mathrm{~cm}^{3}$
Let the length of each edge of a cube be xcm , then $x^{3}=216 \mathrm{~cm}^{3}$
$x^{3}=6^{3}$ which implies $x=6 \mathrm{~cm}$
So length of the new cuboid $=6+6=12 \mathrm{~cm}$, breadth $=6 \mathrm{~cm}$ and height $=6 \mathrm{~cm}$
Surface Area $=2(\mathrm{lb}+\mathrm{bh}+\mathrm{lh})=2(12 \times 6+6 \times 6+12 \times 6)=2(72+36+72)=2 \times 180=360 \mathrm{~cm}^{2}$.
3. The diameter of the base of a right circular cylinder is 14 cm and its height is 7 cm . Find
i) Volume
ii) Total Surface Area
iii) Curved Surface Area

Solution:
Diameter $=14 \mathrm{~cm}$
Radius $=7 \mathrm{~cm}$
Height $=7 \mathrm{~cm}$
i) Volume $=\pi r^{2} h=\frac{22}{7} \times 7 \times 7 \times 7=1078 \mathrm{~cm}^{3}$
ii) Total Surface Area $=2 \pi r(r+h)=2 \times \frac{22}{7} \times 7(7+7)=616 \mathrm{~cm}^{2}$
iii) Curved Surface Area $=2 \pi r h=2 \times \frac{22}{7} \times 7 \times 7=308 \mathrm{~cm}^{2}$.
4. The radius of the base and the height of the right circular cone are 14 cm and 27 cm respectively. Find the volume and the total surface area of the cone?

Solution:

Radius $=14 \mathrm{~cm}$

Height $=27 \mathrm{~cm}$
Volume $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times 27=5544 \mathrm{~cm}^{3}$
Slant height of the cone $\mathrm{I}=\sqrt{r^{2}+h^{2}}=\sqrt{14^{2}+27^{2}}=\sqrt{196+729}=\sqrt{925}=30.4138 \mathrm{~cm}$
Total Surface Area $=\pi r(r+l)=\frac{22}{7} \times 14(14+30.4138)=1954.21 \mathrm{~cm}^{2}$
5. A cone of height 36 cm and radius of base 9 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere?

Solution:
Volume of cone $=\frac{1}{3} \times \pi \times 9 \times 9 \times 36 \mathrm{~cm}^{3}$
If r is the radius of the sphere, then its volume is $\frac{4}{3} \pi r^{3}$.

Since, the volume of clay in the form of the cone and the sphere remains the same, we have
$\frac{4}{3} \pi r^{3}=\frac{1}{3} \times \pi \times 9 \times 9 \times 36$
$r^{3}=9^{3}$
$r=9$

Therefore, the radius of the sphere is 9 cm .

