Answer the following:

1. Find the zeroes of the quadratic polynomial $x^{2}+9 x-36$ and verify the relationship between the zeroes and the coefficients?

Solution:
We have $x^{2}+9 x-36=(x+12)(x-3)$
So the value of $x^{2}+9 \mathrm{x}-36$ is zero when $\mathrm{x}+12=0$ or $\mathrm{x}-3=0$
i.e, $x=-12$ or $x=3$

Therefore, the zeroes of $x^{2}+9 \mathrm{x}-36$ are -12 and 3 .
Now sum of zeroes $=(-12)+3=-9=\frac{-9}{1}=\frac{-(\text { coefficient of } x)}{\text { Coefficient of } x^{2}}$.
Product of zeroes $=(-12) \times 3=-36=\frac{-36}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$.
2. Find a quadratic polynomial, the sum and product of whose zeroes are -5 and 2 respectively.

Solution:
Let the quadratic polynomial be $a x^{2}+\mathrm{bx}+\mathrm{c}$ and its zeroes be α and β.
We have $\alpha+\beta=\frac{-b}{a}=-5$
$\alpha \beta=\frac{c}{a}=2$
If $\mathrm{a}=1$, then $\mathrm{b}=5$ and $\mathrm{c}=2$.
So one quadratic polynomial which fits the given conditions is $x^{2}+5 x+2$.
3. If the sum of zeroes of the quadratic polynomial $3 x^{2}+k x+5$ is 6 , then find the value of k ?

Solution:
Here $a=3, b=k, c=5$
Sum of the zeroes $=\frac{-b}{a}=\frac{-k}{3}=6$ (given)
$-k=3 \times 6=18$
$k=-18$.
4. If α and β are the zeroes of a polynomial such that $\alpha+\beta=-12$ and $\alpha \beta=7$, then find the polynomial?

Solution:
Quadratic polynomial is $x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(-12) x+7=0$
$x^{2}+12 x+7=0$, which is the required polynomial.
5. Find the zeroes of the polynomial $p(x)=3 x^{2}+5 x-2$.

Solution:
By the method of splitting the middle term,
$3 x^{2}+5 x-2=3 x^{2}+6 x-x-2$
$=3 x(x+2)-1(x+2)$
$=(x+2)(3 x-1)$
Hence the value of $3 x^{2}+5 x-2$ is zero when either $3 x-1=0$ or $x+2=0$
i.e, when $x=\frac{1}{3}$ or $x=-2$

So the zeroes of $3 x^{2}+5 x-2$ are $\frac{1}{3}$ and (-2).

