Arithmetic Progressions/Previous Year Question Paper Questions & Answers

CBSE Class 10 Mathematics/Model Questions/Worksheet

1. Find the sum of all three digit natural numbers, which are multiples of 11?

Answer:

AP is 110, 121, 132, -----, 990

Here a = 110, d= 121-110 = 11, *a*_n= 990

We know that a_n = a + (n - 1) d = 110 + (n - 1) 11 = 990

(n-1) 11 = 990 - 110 = 880 $n-1 = \frac{880}{11} = 80$ n = 81 $S_{81} = \frac{81}{2} [2 \times 110 + (81 - 1)11]$ $= \frac{81}{2} [220 + 880]$ $= \frac{81}{2} \times 1100 = 44550$

2. Find the 4th term from the end of the AP: -11, -8, -5, ------, 49

Answer:

Here a = -11, d = (-8) – (-11) = 3, a_n = 49

We know that a_n = a + (n -1) d

49 = (-11) + (n - 1) 3

$$49 = (-11) + (n - 1)3$$

$$60 = (n - 1) 3$$

$$n - 1 = \frac{60}{3} = 20$$

$$n = 21$$

4th term from the end is 18th term.

 a_{18} = a + 17d = (-11) + 17 × 3 = (-11) + 51 = 40

3. Find the sum of all natural numbers that are less than 100 and divisible by 4

Answer:

AP is 4, 8, 12, 16, ------, 96 $a_n = a + (n - 1) d$ 96 = 4 + (n - 1) 4 92 = (n - 1) 4 $n - 1 = \frac{92}{4} = 23$ n = 24 $S_n = \frac{n}{2} [a_1 + a_n] = \frac{24}{2} [4 + 96] = 12 \times 100 = 1200$ 4. How many two digit numbers are divisible by 7? Answer: AP is 14, 21, 28, ------ 98 We know that $a_n = a + (n - 1) d$

98 = 14 + (n – 1) 7

$$98 - 14 = (n - 1) 7$$

 $84 = (n - 1) 7$
 $n - 1 = \frac{84}{7} = 12$
 $n = 13$
5. If $\frac{4}{5}$, a, 2 are three consecutive terms of an AP, find the value of a?
Answer:

Common difference d: $a - \frac{4}{5} = 2 - a$

a + a = 2 +
$$\frac{4}{5}$$

2a = $\frac{14}{5}$
a = $\frac{14}{10} = \frac{7}{5}$

6. The 4th term of an AP is zero. Prove that the 25th term of the AP is three times its 11th term.

Answer:

Given a_4 = a +3d = 0 a = -3d To prove a_{25} = $3a_{11}$ a_{25} = a + 24d = -3d + 24d = 21d ------ (1) a_{11} = a + 10d = -3d + 10d = 7d ------ (2) From (1) and (2), a_{25} = $3a_{11}$

7. How many terms of the AP: 18, 16, 14, ------ be taken so that their sum is zero.

Answer:

Here a = 18, d = 16 - 18 = -2, $S_n = 0$ We know that $S_n = \frac{n}{2} [2a + (n - 1)d]$ $0 = \frac{n}{2} [2 \times 18 + (n - 1)(-2)]$ $0 = \frac{n}{2} [36 - 2n + 2]$ $0 = \frac{n}{2} [38 - 2n]$ $\frac{n}{2} = 0 \text{ or } 38 - 2n = 0$ n = 0 or 38 = 2n $n = \frac{38}{2} = 19$

8. The fourth term of an AP is 11. The sum of the fifth and seventh terms of the AP is 34. Find its common difference?

Answer:

Given $a_4 = 11$, a+3d = 11 ------ (1) $a_5 + a_7 = 34$, a+4d+a+6d = 34 2a + 10d = 34 or a+5d = 17----- (2) Solve these equations, we get a + 3d = 11 a + 5d = 17

-2d = -6

$$d = \frac{-6}{-2} = 3$$

9. Which term of the AP: 3, 15, 27, 39, ------ will be 120 more than its 21st term?

Answer:

$$a_{n} = 120 + a_{21}$$

$$a_{21} = a + 20d = 3 + 20 \times 12 = 3 + 240 = 243$$

$$a_{n} = 120 + a_{21} = 120 + 243 = 363$$
Now $a_{n} = a + (n-1) d$

$$363 = 3 + (n - 1) 12$$

$$363 - 3 = (n - 1) 12$$

$$(n - 1) = \frac{360}{12} = 30$$

$$n = 30 + 1 = 31$$

Therefore, 31st term of the given AP is 120 more than the 21st term.

10. If in an AP, a = 15, d= -3 and a_n = 0, then find the value of n?

Answer:

$$a_n = a + (n - 1) d$$

 $0 = 15 + (n - 1) (-3)$
 $3(n - 1) = 15$
 $(n - 1) = \frac{15}{3} = 5$
 $n = 5 + 1 = 6$
