Arithmetic Progressions/Previous Year Question Paper Questions \& Answers

CBSE Class 10 Mathematics/Model Questions/Worksheet

1. Find the sum of all three digit natural numbers, which are multiples of 11 ?

Answer:
AP is $110,121,132,------, 990$
Here $\mathrm{a}=110, \mathrm{~d}=121-110=11, a_{n}=990$
We know that $a_{n}=a+(n-1) d=110+(n-1) 11=990$
$(\mathrm{n}-1) 11=990-110=880$
$\mathrm{n}-1=\frac{880}{11}=80$
$\mathrm{n}=81$
$S_{81}=\frac{81}{2}[2 \times 110+(81-1) 11]$
$=\frac{81}{2}[220+880]$
$=\frac{81}{2} \times 1100=44550$
2. Find the $4^{\text {th }}$ term from the end of the AP: $-11,-8,-5,--------, 49$

Answer:
Here $a=-11, d=(-8)-(-11)=3, a_{n}=49$
We know that $a_{n}=a+(n-1) d$
$49=(-11)+(n-1) 3$
$49=(-11)+(n-1) 3$
$60=(n-1) 3$
$\mathrm{n}-1=\frac{60}{3}=20$
$\mathrm{n}=\mathbf{2 1}$
$4^{\text {th }}$ term from the end is $18^{\text {th }}$ term.
$a_{18}=\mathrm{a}+17 \mathrm{~d}=(-11)+17 \times 3=(-11)+51=40$
3. Find the sum of all natural numbers that are less than 100 and divisible by 4

Answer:
AP is $4,8,12,16,--------, 96$
$a_{n}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$96=4+(n-1) 4$
$92=(n-1) 4$
$\mathrm{n}-1=\frac{92}{4}=23$
$\mathrm{n}=\mathbf{2 4}$
$S_{n}=\frac{n}{2}\left[a_{1}+a_{n}\right]=\frac{24}{2}[4+96]=12 \times 100=1200$
4. How many two digit numbers are divisible by 7 ?

Answer:
AP is $14,21,28$, 98

We know that $a_{n}=a+(n-1) d$
$98=14+(n-1) 7$
$98-14=(n-1) 7$
$84=(n-1) 7$
$\mathrm{n}-1=\frac{84}{7}=12$
$\mathrm{n}=13$
5. $\operatorname{If} \frac{4}{5}, a, 2$ are three consecutive terms of an AP, find the value of a ? Answer:

Common difference d: a- $\frac{4}{5}=2$-a
$a+a=2+\frac{4}{5}$
$2 \mathrm{a}=\frac{14}{5}$
$a=\frac{14}{10}=\frac{7}{5}$
6. The $4^{\text {th }}$ term of an AP is zero. Prove that the $25^{\text {th }}$ term of the AP is three times its $11^{\text {th }}$ term.

Answer:
Given $a_{4}=\mathrm{a}+3 \mathrm{~d}=0$
$a=-3 d$
To prove $a_{25}=3 a_{11}$
$a_{25}=a+24 d=-3 d+24 d=21 d$
$a_{11}=\mathrm{a}+10 \mathrm{~d}=-3 \mathrm{~d}+10 \mathrm{~d}=7 \mathrm{~d}$
From (1) and (2), $a_{25}=3 a_{11}$
7. How many terms of the AP: 18, 16, 14, ----------- be taken so that their sum is zero.

Answer:
Here $a=18, d=16-18=-2, S_{n}=0$
We know that $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$0=\frac{n}{2}[2 \times 18+(n-1)(-2)]$
$0=\frac{n}{2}[36-2 n+2]$
$0=\frac{n}{2}[38-2 n]$
$\frac{n}{2}=0$ or $38-2 n=0$
$\mathrm{n}=0$ or $\mathbf{3 8}=2 \mathrm{n}$
$\mathrm{n}=\frac{38}{2}=19$
8. The fourth term of an AP is 11 . The sum of the fifth and seventh terms of the AP is 34 . Find its common difference?

Answer:
Given $a_{4}=11, a+3 d=11$
$a_{5}+a_{7}=34, a+4 d+a+6 d=34$
$2 a+10 d=34$ or $a+5 d=17$
Solve these equations, we get
$a+3 d=11$ -
$a+5 d=17$

$$
-2 d=-6
$$

$d=\frac{-6}{-2}=3$
9. Which term of the AP: 3, 15, 27, 39, ------------------ will be 120 more than its $\mathbf{2 1}^{\text {st }}$ term?

Answer:
$a_{n}=120+a_{21}$
$a_{21}=\mathrm{a}+20 \mathrm{~d}=3+20 \times 12=3+240=243$
$a_{n}=120+a_{21}=120+243=363$
Now $a_{n}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$363=3+(n-1) 12$
$363-3=(n-1) 12$
$360=(n-1) 12$
$(\mathrm{n}-1)=\frac{360}{12}=30$
$\mathrm{n}=\mathbf{3 0} \mathbf{+ 1} \mathbf{1}=\mathbf{3 1}$
Therefore, $31^{\text {st }}$ term of the given AP is $\mathbf{1 2 0}$ more than the $\mathbf{2 1}{ }^{\text {st }}$ term.
10. If in an AP, $a=15, d=-3$ and $a_{n}=0$, then find the value of n ?

Answer:
$a_{n}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$0=15+(n-1)(-3)$
$3(n-1)=15$
$(n-1)=\frac{15}{3}=5$
$\mathrm{n}=5+1=6$

